TABLE OF CONTENTS

CLAY COMMONS PRODUCT SUMMARY 4
DESIGN & ENERGY EFFICIENCY WITH BRICK 6
STRENGTH 8
FIRE RESISTANCE 8
SOUND TRANSMISSION 9
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Paint Grade</td>
<td>Party Wall 119</td>
<td>Party Wall 76</td>
<td>Scratch Coat Common EXP & GP</td>
<td>Wirecut Common EXP & GP</td>
<td>Schooner Common EXP & GP</td>
<td>Scratch Coat Common</td>
<td>Smooth Face Common</td>
<td>Universal Common EXP & GP</td>
<td>Wire Cut Common</td>
<td>Double Height Common</td>
<td>Universal Common</td>
<td>Uni Common 3 core</td>
<td>Presto Common (90mm)</td>
<td>Scratch Coat Common</td>
</tr>
<tr>
<td>Texture List</td>
<td>Smooth</td>
<td>Wirecut</td>
<td>Wirecut</td>
<td>Chiseled</td>
<td>Wirecut</td>
<td>Wirecut</td>
<td>Wirecut</td>
<td>Smooth</td>
<td>Wirecut</td>
<td>Smooth, Wirecut</td>
<td>Smooth, Wirecut</td>
<td>Smooth, Wirecut</td>
<td>Wirecut</td>
<td>Wirecut</td>
<td>Chiseled</td>
</tr>
<tr>
<td>SAP Material Code</td>
<td>137596</td>
<td>137611</td>
<td>137610</td>
<td>137600 (EXP)</td>
<td>137610</td>
<td>137253</td>
<td>137588</td>
<td>137717</td>
<td>87109</td>
<td>87110</td>
<td>119728 (GP) 38196</td>
<td>19421</td>
<td>19641</td>
<td>118263</td>
<td>20042</td>
</tr>
<tr>
<td>Plant of Manufacture</td>
<td>Bringelly</td>
<td>Bringelly</td>
<td>Bringelly</td>
<td>Bringelly</td>
<td>Cecil Park</td>
<td>Cecil Park</td>
<td>Cecil Park</td>
<td>Cecil Park</td>
<td>Cecil Park</td>
<td>Cecil Park</td>
<td>Oxley*</td>
<td>Oxley*</td>
<td>Oxley*</td>
<td>Oxley*</td>
<td>Oxley*</td>
</tr>
<tr>
<td>Weight Per Brick (kg)</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>2.9</td>
<td>3.0</td>
<td>4.3</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>5.5</td>
<td>2.7</td>
<td>2.7</td>
<td>3.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Working Size (mm) Length x Depth x Height</td>
<td>230x110 x 76</td>
<td>230x150 x 119</td>
<td>230x150 x 76</td>
<td>230x110 x 76</td>
<td>230x110 x 76</td>
<td>230x110 x 119</td>
<td>230x110 x 76</td>
</tr>
<tr>
<td>Bricks Per SQM</td>
<td>48.5</td>
<td>32.3</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>48.5</td>
<td>24.25</td>
<td>48.5</td>
<td>48.5</td>
<td>24.25</td>
<td>48.5</td>
</tr>
<tr>
<td>Pack Type</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Palletised</td>
<td>Palletised</td>
<td>Palletised</td>
<td>Palletised</td>
<td>Palletised</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
<td>Strapped</td>
</tr>
<tr>
<td>Bricks Per Pallet/Pack</td>
<td>400</td>
<td>200</td>
<td>280</td>
<td>400</td>
<td>400</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>225</td>
<td>460</td>
<td>460</td>
<td>280</td>
<td>460</td>
<td>280</td>
<td>460</td>
</tr>
<tr>
<td>"Characteristic Unconfined Compressive Strength MPa f'uc"</td>
<td>>22</td>
<td>>22</td>
<td>>22</td>
<td>>22</td>
<td>>22</td>
<td>>15</td>
<td>>15</td>
<td>>15</td>
<td>>15</td>
<td>>15</td>
<td>>10</td>
<td>>15</td>
<td>>15</td>
<td>>10</td>
<td>>15</td>
</tr>
<tr>
<td>Void Volume</td>
<td><30%</td>
</tr>
<tr>
<td>Salt Attack Resistance. EXP = Exposure Grade GP = General Purpose</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP & GP</td>
<td>EXP & GP</td>
<td>GP</td>
<td>EXP & GP</td>
<td>GP</td>
<td>EXP & GP</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP</td>
<td>EXP</td>
</tr>
<tr>
<td>Fire Rating - Insulation (Unrendered)</td>
<td>-/-/90</td>
<td>-/-/120</td>
<td>-/-/90</td>
</tr>
</tbody>
</table>

Images are only indicative
Bricks are an essential part of energy efficient building design. The key reason for this, is that bricks provide thermal mass when used in a building. This thermal mass is a key part of passive design, a proven method of maintaining your home at a comfortable temperature all year round and reducing the need for heating and cooling devices, which in turn decreases electricity loads, providing cost savings.

PRINCIPLES OF PASSIVE SOLAR DESIGN

Brickwork can be very energy efficient. When designing a house to be cool in summer and warm in winter, the wall material as well as other factors need to be taken into account. There are five key passive design features:

- **Orientation:** Placement of the house in relation to the sun.
- **Insulation:** A wall's ability to isolate temperature.
- **Climate:** The maximum day-time and minimum night-time temperatures (diurnal range). Thermal mass is most appropriate in climates with a large diurnal temperature range.
- **Thermal Mass:** Heavy-weight wall materials slow the passage of heat through a wall, a process called 'thermal lag'. And, the easiest way to get this heavy mass into walls is by using brickwork. The heavier the brick, the higher its thermal value.
- **Ventilation:** Air flow through the house.

According to the Department of Climate Change and Energy Efficiency, “Thermal mass acts as a thermal battery. During summer, it absorbs heat, keeping the house comfortable. In winter, the same thermal mass can store the heat from the sun or heaters to release it at night, helping the home stay warm.”

WINTER

According to the Energy Efficiency and the Environment, “Thermal mass acts as a thermal battery. During summer, it absorbs heat, keeping the house comfortable. In winter, the same thermal mass can store the heat from the sun or heaters to release it at night, helping the home stay warm.”

SUMMER

Tailoring these passive design features to each climate is important. Think Brick Australia has put together a Climate Design Wizard that provides sustainable design strategies for designing ecologically sustainable buildings for the unique climatic conditions within Australia.

With many new building products entering the market, it’s important to consider what will be best for the long term sustainability of building designs and the environment and what will minimise energy usage after installation.

REFERENCES:

DESIGN & ENERGY EFFICIENCY WITH BRICK

CLAY BRICKS PROVIDE SUPERIOR THERMAL CONTROL

The same research findings through Think Brick Australia and the University of Newcastle also found that insulated lightweight buildings exhibit greater variations in internal temperature and minimal thermal lag, resulting in daily temperature swings of more than twice that of insulated cavity brick dwellings during hot conditions.

Image 04 shows that the lightweight module responds directly to the external environment with a rapid increase and reduction in temperature due to its low thermal mass, unlike insulated cavity brick. The lightweight module exhibited no properties with the potential to assist in maintaining adequate thermal comfort. Clay bricks have always been known for their thermal comfort properties and this research confirms this.

EXTERNAL AND INTERNAL AIR TEMPERATURES FOR LIGHTWEIGHT AND INSULATED CAVITY BRICK MODULES, JANUARY 2006.

TOTAL ENERGY CONSUMPTION, OCTOBER 2007

CAVITY BRICK WITH INSULATION

REFERENCE:

STRENGTH

BRICK STRENGTH IS DEFINED AS RESISTANCE TO LOAD PER UNIT AREA AND IS EXPRESSED IN MEGAPASCALS (MPA). PGH™ OFFERS A RANGE OF BRICKS THAT COMPLY WITH STRENGTH REQUIREMENTS TO OPTIMISE PROJECT, STRUCTURAL AND COST PERFORMANCE.

COMPRESSIVE STRENGTH

It is measured according to AS4456.4 – Determining Compressive Strength of Masonry Units. Individually crushing 10 bricks gives the compressive strength of each brick and the mean compressive strength of the lot. Whilst these figures are not used in masonry design, they are used to calculate Unconfined Compressed Strength.

UNCONFINED COMPRESSION STRENGTH

Unconfined compressive strength is a calculated number based on the compressive strength. The test method involves subjecting the individual unit to increasing load by compressing it between two metal platens, which is then multiplied by a factor depending on the height of the brick. The resulting number is called the unconfined compressive strength and reflects the performance of the bricks in a wall. Whilst this figure is not used in masonry design, it is used to calculate Characteristic Unconfined Compressed Strength.

CHARACTERISTIC UNCONFINED COMPRESSION STRENGTH (F'UC)

A batch of bricks has a range of strengths that would usually follow a normal distribution and which contribute to the strength of the entire wall. Importantly, the strongest brick does not determine the strength of the wall. To ensure the safe strength of the wall, engineers use characteristic unconfined compressive strength in masonry design calculations. This is the strength 95% of the bricks will exceed and is typically 0.86 times the lowest masonry design strength. This is the strength used to calculate Characteristic Unconfined Compressed Strength.

FIRE RESISTANCE

FIRE RESISTANCE LEVELS (FRLs) ARE SPECIFIED IN THE NATIONAL CONSTRUCTION CODE (NCC). THIS SYSTEM PROVIDES AN ACCURATE METHOD OF PREDICTING THE ABILITY OF A WALL TO MAINTAIN ITS STRENGTH IN A FIRE AND TO RESIST THE SPREAD OF THE FIRE. THE FRL SPECIFIES THE FIRE RESISTANCE PERIODS (FRP) FOR STRUCTURAL ADEQUACY, INTEGRITY AND INSULATION.

There are three components to fire resistance levels which are expressed in minutes.

1. STRUCTURAL ADEQUACY: The ability of a wall to continue to perform its structural function for the fire resistance period (FRP).

2. INTEGRITY: The ability of the wall to maintain its continuity and prevent the passage of flames and hot gases through cracks in the wall during the FRP.

3. INSULATION: The ability of the wall to provide sufficient insulation such that the side of the wall away from the fire does not exceed a pre-defined temperature during the rated period. At this temperature (a rise of 160°C over the ambient temperature or a maximum of 180°C) surface finishes and furnishings in contact with or near the wall may combust.

A fire resistance level is therefore expressed as a triple rating, for example 90/90/90, for each of the structural adequacy, integrity and insulation components respectively.

FRLs can be determined from AS 3700 (Masonry Structures) or by testing in accordance with AS 1530.4. The FRL of a wall depends not only on the thickness of the wall, but also on its height, length and boundary conditions (ie how it is connected to other building elements).

The design characteristic compressive strength of masonry (F’m as denoted by AS3700) in a wall is generally a function of the height of the structure and the spacing of the load-bearing elements (the walls). Everything else being equal, the taller the structure and the larger the spacing between walls, the greater the compressive strength required.

The compressive strength requirements also vary for different levels within the same structure. Whilst the walls on the ground floor must bear the load of all the floors above plus the roof, the walls on the top floor must only carry the load of the roof itself.

SOUND TRANSMISSION

WITH GROWING NUMBERS OF APARTMENTS IN MANY CITIES, THE NEED TO MAINTAIN PRIVACY BETWEEN DWELLINGS HAS NEVER BEEN MORE IMPORTANT. THE ACOUSTIC PERFORMANCE OF PRODUCTS IS BEING CONSIDERED MORE OFTEN THAN EVER BEFORE.

In response to the market, the National Construction Code (NCC) sound provisions were amended on the 1st May 2004. Amendments to the NCC apply to New South Wales, the ACT, Tasmania and South Australia. The NCC sound provisions apply to attached Class 1 buildings plus Class 2, 3 and 9c buildings.

CLASS 1 BUILDINGS: Buildings include single dwellings that do not have another dwelling above or below it, such as a stand-alone house or a row of townhouses.

CLASS 2 BUILDINGS: Buildings include buildings that contain two or more sole-occupancy units, such as an apartment unit.

CLASS 3 BUILDINGS: Buildings include residential buildings that contain a number of unrelated persons, such as a guest house or the residential part of a school, hotel, etc.

CLASS 9C BUILDINGS: A building of a public nature, specifically an Aged Care building.

MEASUREMENT OF ACOUSTIC PERFORMANCE

Sound or acoustic performance is measured by the weighted sound reduction index (Rw). Rw is a single number rating of the sound reduction through a wall or other building element. Since the sound reduction may be different at different frequencies, test measurements are subjected to a standard procedure that yields a single number that is about equal to the average sound reduction in the middle of the human hearing range.

Since the human ear does not discern all frequencies in the spectrum, measurement standards have been altered to incorporate correction factors. Correction factors are also used to take into account common noise sources.

There are two types of correction factors:

CTR = weighted towards low frequency sounds such as traffic, trains, hi-fi system with subwoofers. These noise sources are much more distinct and irritating.

C = weighted towards general domestic sounds such as speech, vacuum cleaners, normal television and radio.

The reference spectrum for this is fairly flat and is commonly referred to as “pink noise”.

The NCC often specifies in terms of Rw + Ctr, where Ctr is a correction factor for low to medium frequency noise. Therefore, the correction factor is used to show how effective a particular wall construction is against those types of noise. The correction factors are negative numbers, so the smaller the number the better. A small number (eg -1) shows that the construction does not have a large performance drop in that sound frequency range.

EVALUATING ACOUSTIC PERFORMANCE

When evaluating the loudness of a sound resulting on the other side (receiver side) of a partition the following process is used:

1. Begin with a reference spectrum (sound source) loudness measured in dBA.
2. Apply (subtract) the transmission loss of the partition.
3. Determine the new dBA value on the resultant (receiver) side. The difference between the reference and the resultant value is equivalent to the Rw + Ctr (when the Ctr spectrum is applied as the sound source).

The frequencies considered in the Ctr spectrum have greater levels of energy and are much more difficult to attenuate. Consequently, the NCC has adopted this term when specifying the minimum sound insulation requirements involving habitable areas.

INTERPRETING A SOUND RESULT?

An acoustic performance result is expressed in terms of Rw and the correction factors. For example, a wall might have Rw(C, Ctr) of 55(-1), which means that Rw is 55, C is -1 and Ctr is -5. The NCC often specifies the Rw + Ctr. For this wall the Rw + Ctr will be 55 - (-5) or 55 + 5. So the Rw + Ctr is 50.

THE DIFFERENCE BETWEEN RW AND STC?

Sound transmission class (STC) was a former reference to sound performance requirements which were based on different criteria to that of Rw ratings, and it did not include any correction factors. STC is no longer relevant to sound performance and cannot be used.

8 - PGH BRICKS™ COMMERCIAL CLAY COMMONS AND TECHNICAL DATA
ACCEPTABLE FORMS OF CONSTRUCTION FOR WALLS

<table>
<thead>
<tr>
<th>Description</th>
<th>R_w + Ctr (not less than)</th>
<th>R_w (not less than)</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two leaves of 110 mm clay brick masonry with: (a) cavity not less than 50 mm between leaves; and (b) 50 mm thick glass wool insulation with a density of 11 kg/m³ or 50 mm thick polyester insulation with a density of 20 kg/m³ in the cavity.</td>
<td>50</td>
<td>50</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>Two leaves of 110 mm clay brick masonry with: (a) cavity not less than 50 mm between leaves and; (b) 13 mm cement render on each outside face.</td>
<td>50</td>
<td>50</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>Single leaf of 110 mm clay brick masonry with: (a) a row of 70 mm x 35 mm timber studs or 64 mm steel studs at 600 mm centres, spaced 20 mm from the masonry wall; and (b) 50 mm thick glass or mineral wool insulation with a density of 11 kg/m³ positioned between studs; and (c) one layer of 13 mm plasterboard fixed to outside face of studs and outside face of masonry.</td>
<td>50</td>
<td>50</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>Single leaf of 90 mm clay brick masonry with: (a) a row of 70 mm x 35 mm timber studs or 64 mm steel studs at 600 mm centres, spaced 20 mm from each face of the masonry wall; and (b) 50 mm thick glass or mineral wool insulation with a density of 11 kg/m³ positioned between studs in each row; and (c) one layer of 13 mm plasterboard fixed to studs on each outside face.</td>
<td>50</td>
<td>50</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>Single leaf of 150 mm brick masonry with: 13 mm cement render on each face.</td>
<td>-</td>
<td>50</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>110 mm thick brick masonry with: 13 mm cement render on each face.</td>
<td>-</td>
<td>45</td>
<td>![Construction Diagram]</td>
</tr>
<tr>
<td>110 mm thick concrete brickwork.</td>
<td>-</td>
<td>45</td>
<td>![Construction Diagram]</td>
</tr>
</tbody>
</table>
DISCLAIMER
PGH™ cannot and does not warrant the strength of any structure comprising its bricks and other components. PGH™ strongly advises users to consult a qualified structural engineer before selecting any masonry products and structural systems. The field performance advice provided in this document is based on typical field de-rating applied to laboratory measured performance data. Independent specialist advice and confirmation should be sought for the specific project with regard to the presence of flanking paths or any other acoustic effects that may affect field performance. Information contained in this document may change without notice.

WARNING INFORMATION
Dust from clay products contains crystalline silica. Repeated inhalation of this dust may cause lung scarring (silicosis) and lung cancer. Do not breathe dust. Wear an approved mask (respirator) if dusty. For further information and a Material Safety Data Sheet, visit www.pghbricks.com.au. PGH™ is unable to accept any liability for costs incurred as a result of failure or delay in delivering the product. Further test certificates are available on request. No product is guaranteed to match.

We offer more than just our Commons. PGH Bricks & Pavers have a wide range of face bricks and pavers to choose from. Visit a PGH Selection Centre.

For sales or technical assistance:
CALL 131 579 | OR VISIT US AT WWW.PGHBRICKS.COM.AU
@pghbricks